Steve Sterling, WA7DUH

- Balanced To Unbalanced = Balun
- Converts balanced feed to unbalanced feed
 - Dipole antennas, twin lead, ladder line are "balanced"
 - Verticals over ground plane, gamma-matched antennas, coaxial feed line are Unbalanced

 Without Balun on balanced devices (dipoles) fed with coax – RF on outside of coax and into shack

- Installing G5RV
 dipole—need Balun
 between ladder line
 (balanced) and coax
 (unbalanced)
- Quick search on internet said an airwound Balun would work good

Next search said "clamp on" Choke around coax

- Installing G5RV dipole— need Balun between ladder line (balanced) and coax (unbalanced)
- Quick search on internet said an airwound Balun would work good

Still had RF in shack after installing airwound and clamp on - why?

Voltage or transformer Balun

W2AU by Unadilla is a voltage Balun

Voltage baluns work, but with issues

Issues With Voltage or Transformer Baluns

- Ferrite core must handle ALL the power being transmitted from the primary to secondary
- Linearity, Saturation & Hysteresis
 - Linear device has the same impedance for all values of applied voltage and current
 - Ferrites will saturate at some high level of current.
 - Ferrite behaves linearly if the field within it is small, but becomes nonlinear as it begins to saturate.

Issues With Voltage or Transformer Baluns

- Ferrite core must handle ALL the power being transmitted from the primary to secondary
 - Must be low loss ferrite core or HEAT will destroy
 - Does not deal with off-normal impedances well –
 causing saturation, high losses and heat

Transmission Line Balun

- Uses transmission line
- Good for one narrow band only
- Great for VHF / UHF

Sleeve Baluns

- Great for VHF / UHF
- Complex to fabricate accurately

What Is Our Objective?

Objective

- Stop electromagnetic radiation and reception on unbalanced coax feedline
- In many circuits, RF Choke (inductance) is used.
- RF Choke passes DC and blocks RF using inductive reactance & impedance
- RF Choke ONLY blocking RF on outside of coax should work

What Is Our Objective?

- What causes RF on outside of coax?
- RF current from xmitter is I1
 & I2. Equal and opposite
- I2 splits into I4 (dipole arm) and I3 (outside of coax)
- Magnitude of I3 depends on RF impedance to ground at unbalanced-to-balanced transition

What Is Our Objective?

- RF Choke passes DC and blocks RF using inductive reactance & impedance
- Guanella RF Choke ONLY blocking RF on outside of coax should work
- Choke is only dealing with the common mode current on outside of coax. Does not handle full Xmitter power

Air Core Coax Choke

- Advantage- Cheap and simple to build
- Takes many turns to achieve inductance/ impedance needed at lower frequencies
- Capacitance between ends causes resonance at undesirable freq.

- Maxwell considered 500z impedance was sufficient– current experts say 1500 z minimum, 5000 z best
- Ferrite cores on chokes increase inductance reactance / impedance substantially
- Must be the correct "Mix" of ferrite material for the desired frequencies and impedance
 - Mix 31 ferrites, available only in Fair-Rite ferrite products is considered the best for HF band current choke cores

1 Turn Clamp-on Mix 31 Ferrite

- Wideband Mix 31 has 8:1 effective frequency span
- Compare to Mix 43 with 4:1 effective frequency span

"String Of Beads" Balun

- Multiple ferrite beads around the coax
- Each bead only contributes a small impedance
- Must be the correct "mix"
- Takes many beads (30-50 or more) at lower frequencies

W2DU "String of Beads" Model

- Multiple Winding Ferrites
 - Each pass through the center of a ferrite increases
 the impedance by the square of the passes
 - Multi-turn Impedance = 1 Pass Impedance x (No of Turns)²

Using graph on left

- -Z @ 4Mhz = 70
- 5 Passes thru core

Total $Z = 70 * 5^2 = 1750z$

- Multi-turn Coax Using Ferrite Toroids
 - Each pass through the center of a ferrite increases
 the impedance by the square of the passes

 $= 70Z * (5turns)^2 * 5 Mix 31 Toroids = 5600 Z$

Cost = \$7 per Toroid = \$35 (plus coax)

- Multi-turn Coax Using Ferrite Toroids
 - Each pass through the center of a ferrite increases the impedance by the square of the passes
 - Also increases the capacitance, lowering the resonance of our equivalent tuned circuit

22

 Multi-turn Bifilar Wound Wire Using Ferrite Toroids

 Each pass through the center of a ferrite increases the impedance by the square of the passes

#12 to #16 Coated Magnet Wire, or THHN

electrical

-Magnet wire close to 50 Z

-THHN close to 100 Z

 Stray capacitance between windings less with bifilar wound vs coax

Take Away

- Transformer (aka voltage) baluns have issues and are rarely the best balun approach
- Stop the RF on the outside of coax with a ferritebased current choke balun
- Getting the correct ferrite material for the planed operating frequency is essential. Mix 31 is currently the best for the HF bands.
- The W2DU "string of beads" current choke works OK but it takes a lot of beads, typically > 50 depending on size and mix
- Winding a "transmission line" around a 2 ¼" mix 31 balun is the most cost effective and efficent way to create an HF balun

Where to Get More Information

- Ref 1- Some Aspects of the Balun Problem; Walter Maxwell http://w2du.com/r2ch21.pdf
- Ref 2- A Ham's Guide to RFI, Ferrites, Baluns, and Audio Interfacing by Jim Brown K9YC
- Ref 3- Choosing the Corect Balun by Tom W8JI, http://www.dxengineering.com
- Ref 4- ARRL Antenna Book
- Ref 5- Baluns: What They Do And How They Do It By Roy Lewallen, W7EL
 http://www.eznec.com/Amateur/Articles/Baluns.pdf